Etiology of PFPS: A Biomechanical Perspective
So, my last post regarding patellofemoral pain syndrome (VMO? VM-No) stated its prevalence and its misdirected treatment. This next post will help to clear up some of the confusion amongst clinicians as to the cause of PFPS, which should in turn help to drive the most effective treatment strategies.
What causes PFPS? Now, this is a very loaded question. However, over the last couple decades, the etiology of this disorder has become a little more clear…
It all breaks down to a very simple formula: Patellofemoral Joint (PFJ) Reaction Force / PFJ Contact Area.
This is all well and good, but what causes this altered contact area?
This abnormal loading may be caused by non-modifiable morphological abnormalities. The first possible cause is patella alta (PA) which, according toWard et al, increases the incidence of lateral displacement, lateral tilt, and decreased contact area. In regards to PFJ contact area, they found a statistically significant difference between subjects with PA and those with normal patella vertical displacement at all ranges tested (0°, 20°, 40°, and 60° of knee flexion). This does appear to make biomechanical sense due to the fact that the inferior pole of the patella is thought to make initial contact with the femoral trochlea at approximately 20° of knee flexion and if the patella is positioned more superiorly, initial contact will not occur until deeper ranges of knee flexion, thus decreasing overall PFJ contact area. Another non-modifiable factor is the lateral displacement and resulting decreased contact area caused by trochlear dysplasia. This bony morphological defect results in flattening of the lateral facet of the intercondylar groove, which is typically the most important local factor in controlling excessive lateral patella translation. This can result in not only abnormal loading, but also chronic patellar subluxation and/or dislocation. This flattening of the lateral intercondylar groove can result in up to a 55% decrease in medial patellar stability. Unfortunately, there is very little that we, as therapists, can do to correct these morphological abnormalities, however there are certain factors influencing abnormal patellar tracking that can be altered conservatively.
The static Q-angle has been implicated in patellofemoral pathology for countless years, but how does this correlate to alignment during functional activity? Massada et al found that dynamic Q-angle values were statistically significant in determining individuals who suffer from PFPS even in the absence of a increased static Q-angle. In this study, there was little correlation between static Q-angle and the presence of PFPS. This gives support to the use of this dynamic measure in lieu of its static counterpart. So what factors influence this dynamic Q-angle? This angle has both proximal influences at the hip (excessive adduction and femoral IR) and distal influences at the ankle/foot (excessive pronation and tibial IR).
During weight bearing, the femur moves about a fixed patella and therefore excessive femoral IR results in increased contact directed primarily at the lateral facet of the patella (Powers et al). In fact, just 10° of IR can lead to a substantial decrease in PFJ contract area and a 50% increase in joint stress. The figure to the right demonstrates the lateral tilt of the patella during non-weight bearing (A) and the femoral IR resulting in altered contact area during weight bearing (B). Additionally, Souza et al found that females with PFPS demonstrated greater peak hip internal rotation compared to the control group during running, drop jump, and step down. The PFPS group also demonstrated 14% weaker hip abductor strength and 17% weaker hip extensor strength. Wilson et al, Noehren et al, and Nakagawa et al found that individuals presenting with PFPS demonstrated increased hip adduction during running, jumping, and single-leg squats. This adduction creates an increased valgus force about the knee joint, which in turn causes increased loading of the lateral PFJ. Distally, pronation at the subtalor joint can lead to IR of the tibia, which then once again creates an increase in valgus at the PFJ.
Now that we are beginning to better understand this pathology and its risk factors, we can begin to form more efficient and effective conservative treatment strategies. These treatments should be focused on decreasing laterally directed PFJ forces (locally, proximally, and distally), decreasing quadriceps dominance, and maximizing PFJ contact area. Each of these three treatment principles will be discussed in additional blog posts in the coming weeks.
No hay comentarios:
Publicar un comentario